近年来,低资源机器阅读理解(MRC)取得了重大进展,模型在各种语言数据集中获得了显着性能。但是,这些模型都没有为URDU语言定制。这项工作探讨了通过将机器翻译的队伍与来自剑桥O级书籍的Wikipedia文章和Urdu RC工作表组合的人生成的样本组合了机器翻译的小队,探讨了乌尔通题的半自动创建了数据集(UQuad1.0)。 UQuad1.0是一个大型URDU数据集,用于提取机器阅读理解任务,由49K问题答案成对组成,段落和回答格式。在UQuad1.0中,通过众包的原始SquAd1.0和大约4000对的机器翻译产生45000对QA。在本研究中,我们使用了两种类型的MRC型号:基于规则的基线和基于先进的变换器的模型。但是,我们发现后者优于其他人;因此,我们已经决定专注于基于变压器的架构。使用XLMroberta和多语言伯特,我们分别获得0.66和0.63的F1得分。
translated by 谷歌翻译
人口贩运是一个普遍的问题,尽管在全球范围内为与之作斗争,但仍坚持不懈。任何年龄,种族,种族,性别,性别认同,性取向,国籍,移民身份,文化背景,宗教,社会经济阶级和教育的个人都可以成为人口贩运的受害者。随着技术的进步和引入自动驾驶汽车(AVS),人口贩子将采用新的方式运输受害者,这可以加速有组织的人口贩运网络的增长,这可以使对执法人员更具挑战性的人口贩运的探测机构。这项研究的目的是为自动驾驶汽车开发基于创新的音频分析的人口贩运检测框架。这项研究的主要贡献是:(i)为AVS定义四个非平凡,可行和现实的人口贩运情景; (ii)创建一个与人口贩运有关的新的,全面的音频数据集,其中五个类别,即哭泣,尖叫,车门爆炸,汽车噪音和对话; (iii)开发一个与人口贩运有关的音频数据分类的深1D卷积神经网络(CNN)体系结构。我们还使用新的音频数据集进行了案例研究,并评估了深1-D CNN的音频分类性能。我们的分析表明,深1-D CNN可以将来自人口贩运受害者的声音与非人口贩运声音的准确性为95%,这证明了我们框架的功效。
translated by 谷歌翻译
疏散计划是灾难管理的关键部分,其目标是将人员搬迁到安全和减少伤亡。每个疏散计划都有两个基本组件:路由和调度。但是,这两个组件与目标的联合优化,例如最大程度地减少平均疏散时间或疏散完成时间,这是一个计算问题上的问题。为了解决它,我们提出了MIP-LNS,这是一种可扩展的优化方法,将启发式搜索与数学优化结合在一起,并可以优化各种目标函数。我们使用来自德克萨斯州休斯敦的哈里斯县的现实世界道路网络和人口数据,并应用MIP-LNS来查找该地区的疏散路线和时间表。我们表明,在给定的时间限制内,我们提出的方法在平均疏散时间,疏散完成时间和解决方案的最佳保证方面找到了比现有方法更好的解决方案。我们在研究区域进行基于代理的疏散模拟,以证明解决方案的功效和鲁棒性。我们表明,即使撤离人员在一定程度上偏离了建议的时间表,我们的规定疏散计划仍然有效。我们还研究了疏散计划如何受到道路故障的影响。我们的结果表明,MIP-LN可以使用有关道路估计截止日期的信息,以成功,方便地撤离更多人,以提出更好的疏散计划。
translated by 谷歌翻译
我们介绍RealityTalk,该系统通过语音驱动的互动虚拟元素来增强实时实时演示。增强演示文稿利用嵌入式视觉效果和动画来吸引和表现力。但是,现有的实时演示工具通常缺乏互动性和即兴创作,同时在视频编辑工具中产生这种效果需要大量的时间和专业知识。RealityTalk使用户能够通过实时语音驱动的交互创建实时增强演示文稿。用户可以通过实时语音和支持方式进行交互提示,移动和操纵图形元素。根据我们对177个现有视频编辑的增强演示文稿的分析,我们提出了一套新颖的互动技术,然后将它们纳入真人秀。我们从主持人的角度评估我们的工具,以证明系统的有效性。
translated by 谷歌翻译
预训练在机器学习的不同领域表现出成功,例如计算机视觉,自然语言处理(NLP)和医学成像。但是,尚未完全探索用于临床数据分析。记录了大量的临床记录,但是对于在小型医院收集的数据或处理罕见疾病的数据仍可能稀缺数据和标签。在这种情况下,对较大的未标记临床数据进行预训练可以提高性能。在本文中,我们提出了专为异质的多模式临床数据设计的新型无监督的预训练技术,用于通过蒙版语言建模(MLM)启发的患者预测,通过利用对人群图的深度学习来启发。为此,我们进一步提出了一个基于图形转换器的网络,该网络旨在处理异质临床数据。通过将基于掩盖的预训练与基于变压器的网络相结合,我们将基于掩盖的其他域中训练的成功转化为异质临床数据。我们使用三个医学数据集Tadpole,Mimic-III和一个败血症预测数据集,在自我监督和转移学习设置中展示了我们的预训练方法的好处。我们发现,我们提出的培训方法有助于对患者和人群水平的数据进行建模,并提高所有数据集中不同微调任务的性能。
translated by 谷歌翻译
语言模型(LM)在全球许多基于语言的应用空间中变得普遍。尽管这些LMS正在改善我们与数字产品的日常互动,但无论是开放式语言还是由这些模型生成的文本仍然揭示了对特定人群的任何偏见,因此仍然存在担忧,从而冒着某种产品的可用性风险。有必要确定这些模型是否具有偏见以改善这些模型的公平性。这一差距激发了我们正在进行的工作,在该工作中,我们通过残疾镜头测量了GPT-3生成的文本的两个方面。
translated by 谷歌翻译
预训练在机器学习的不同领域表现出成功,例如计算机视觉(CV),自然语言处理(NLP)和医学成像。但是,尚未完全探索用于临床数据分析。即使记录了大量的电子健康记录(EHR)数据,但如果数据收集到小型医院或处理罕见疾病的交易,数据和标签也可能稀缺。在这种情况下,对较大的EHR数据进行预训练可以改善模型性能。在本文中,我们将无监督的预培训应用于异质的多模式EHR数据,以预测患者。为了对这些数据进行建模,我们利用大量的人群图表。我们首先设计基于图形变压器的网络体系结构,旨在处理EHR数据中发生的各种输入特征类型,例如连续,离散和时间序列特征,从而允许更好的多模式数据融合。此外,我们设计基于蒙版的插入方法的预训练方法,以在对不同的最终任务进行微调之前对网络进行预培训。预训练是以一种完全无监督的方式进行的,这为未来具有不同任务和类似方式的大型公共数据集预先培训奠定了基础。我们在两个患者记录的医学数据集(Tadpole和Mimic-III)上测试我们的方法,包括成像和非成像功能以及不同的预测任务。我们发现,我们提出的基于图形的预训练方法有助于在人群水平上对数据进行建模,并进一步改善Mimic的AUC方面的AUC,平均AUC的性能,而Tadpole则为7.64%。
translated by 谷歌翻译
疾病预测是医学应用中的知名分类问题。 GCNS提供了一个强大的工具,用于分析患者相对于彼此的特征。这可以通过将问题建模作为图形节点分类任务来实现,其中每个节点是患者。由于这种医学数据集的性质,类别不平衡是疾病预测领域的普遍存在问题,其中类的分布是歪曲的。当数据中存在类别不平衡时,现有的基于图形的分类器倾向于偏向于主要类别并忽略小类中的样本。另一方面,所有患者中罕见阳性病例的正确诊断在医疗保健系统中至关重要。在传统方法中,通过将适当的权重分配给丢失函数中的类别来解决这种不平衡,这仍然依赖于对异常值敏感的权重的相对值,并且在某些情况下偏向于小类(ES)。在本文中,我们提出了一种重加权的对抗性图形卷积网络(RA-GCN),以防止基于图形的分类器强调任何特定类的样本。这是通过将基于图形的神经网络与每个类相关联来完成的,这负责加权类样本并改变分类器的每个样本的重要性。因此,分类器自身调节并确定类之间的边界,更加关注重要样本。分类器和加权网络的参数受到侵犯方法训练。我们在合成和三个公共医疗数据集上显示实验。与最近的方法相比,ra-gcn展示了与最近的方法在所有三个数据集上识别患者状态的方法相比。详细分析作为合成数据集的定量和定性实验提供。
translated by 谷歌翻译